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SUMMARY

In a companion paper, the authors used a hierarchical formulation based on a Helmholtz velocity de-
composition to simulate transonic �ows over airfoils. The potential �ow formulation is augmented with
entropy and vorticity corrections and the numerical results are compared to standard Euler and Navier–
Stokes calculations. For many aerodynamic applications, the corrections are limited to relatively small
regions; the �ow in the near and far �elds is irrotational and isentropic. The entropy and vorticity cor-
rections are governed by convection=di�usion equations while the non-homogeneous potential equation
is of mixed type; elliptic in the subsonic domain and hyperbolic in the supersonic one. The forcing
function represents the necessary correction for mass conservation. Upwind schemes are used for the
convection terms of the scalar equations of the corrections and for the potential equation in the su-
personic region. The formulation can be viewed as an implementation of a viscous=inviscid interaction
procedure which is equivalent to Navier–Stokes equations in the inner �eld.
In this paper, convergence acceleration techniques are applied for such a formulation using single and

multiple grids. For a single grid, optimal relaxation parameters for subsonic potential �ow regions and
local arti�cial time steps for the scalar correction equations have been used. A full multigrid technique
is implemented to the augmented potential equation. Only three grids: coarse, intermediate and �ne
meshes are used. Results for both inviscid and viscous transonic �ows are presented. It is noticed
that the potential and the viscous �ow calculations, based on the present formulation, have comparable
convergence histories. The limited applications of multigrid result in an order of magnitude saving of the
work units for both calculations. More savings should be achievable with more sophisticated multigrid
procedures. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the last three decades, multigrid convergence acceleration techniques have been used in
computational �uid dynamics. It has been proven to be a very e�ective tool for elliptic prob-
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Figure 1. Mach contours (M∞ = 0:86, potential �ow, � = 0◦).

lems. Applications to �ow simulations, governed by more complicated equations have been
advocated by A. Brandt. His early ideas were summarized in Reference [1]. Since then,
progress has been made by many researchers. Recently, textbook multigrid e�ciency has
been obtained by Thomas et al. [2]. Very impressive results for two-dimensional transonic
inviscid �ows are reported in Reference [3] by Caughey and Jameson. They used LU factor-
ization with local iterations, rather than Runge–Kutta schemes adopted earlier in Reference
[4], as a smoothing operator. Further investigations are, however, needed for viscous �ow
problems.
In the present paper, convergence acceleration techniques are applied for transonic aero-

dynamic steady �ow simulations based on the hierarchical formulation of Reference [5].
The full multigrid procedure is applied to accelerate the convergence of iterative line re-
laxation methods to a steady-state solution of a potential equation (with non-homogeneous
terms). Only three grids (coarse, intermediate and �ne) are used. The calculations start
with uniform �ow as an initial guess for the coarse mesh. Mesh re�nement is adopted
to obtain a good initial guess for the �ne mesh calculations. Multigrid is then applied
with a V-cycle and standard restriction and prolongation schemes. The non-homogeneous
terms are updated only on the �ne mesh through solving scalar equations for the correc-
tions to the potential �eld. The density is calculated in terms of the speed, augmented with
entropy.
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Figure 2. Mach contours (M∞ = 0:86, rotational �ow, � = 0◦).
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Figure 3. Convergence history (M∞ = 0:86, potential �ow, � = 0◦).

Numerical results for inviscid and viscous �ows with single and multiple grids are presented.
The results of standard potential �ow calculations (i.e. without corrections) are comparable
to the early work of Jameson where he introduced the MAD scheme, see Reference [6]. On
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Figure 4. Convergence history (M∞ = 0:86, rotational �ow, � = 0◦).

Figure 5. Mach contours (M∞ = 1:5, potential �ow, � = 0◦).

the other hand, for viscous �ow problems, the e�ciency of the present results is comparable
to that of Reference [7].
In the following, the details of the governing equations and the numerical methods are

given and then the numerical results are discussed.
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Figure 6. Mach contours (M∞ = 1:5, rotational �ow, � = 0◦).
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Figure 7. Convergence history (M∞ = 1:5, potential �ow, � = 0◦).

2. PROBLEM FORMULATION: GOVERNING EQUATIONS AND BOUNDARY
CONDITIONS

Consider a steady two-dimensional compressible �ow over an airfoil. Following [5], the ve-
locity vector can be decomposed into a gradient of a potential and a correction accounting
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Figure 8. Convergence history (M∞ = 1:5, rotational �ow, � = 0◦).

Figure 9. Mach contours (M∞ = 1:5, Re = 10 000, � = 0◦) (coupling
potential �ow with a viscous layer).

for the rotational component, i.e.

q = ∇�+ q∗ (1)
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Figure 10. Mach contours (M∞ = 1:5, Re = 10 000, � = 0◦) (coupling
rotational �ow with a viscous layer).
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Figure 11. Convergence history (M∞ = 1:5, Re = 10 000, � = 0◦) (coupling
potential �ow with a viscous layer).

The continuity equation, representing conservation of mass, can be written in the following
form:

∇ · �∇� = −∇ · �q∗ (2)

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:517–541



524 M. HAFEZ AND E. WAHBA

0 5000 10000 15000
10-6

10-5

10-4

10-3

10-2

10-1

Work Units

R
es

id
ua

l

SG
MG

Figure 12. Convergence history (M∞ = 1:5, Re = 10 000, � = 0◦) (coupling
rotational �ow with a viscous layer).

Figure 13. Mach contours (M∞ = 0:1, potential �ow, � = 0◦).

In (2), the right-hand side is acting as a source term, or a forcing function. Equation (2)
is solved with the no penetration boundary condition on the solid surface, i.e.

@�
@n
= 0 (3)

and a uniform �ow with a potential vortex in the far �eld for lifting airfoils. The density in
Equation (2) is calculated in terms of the speed augmented with an entropy correction

� = �ie−�S=R (4)
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Figure 14. Mach contours (M∞ = 0:1, Re = 500, � = 0◦).
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Figure 15. Convergence history (M∞ = 0:1, potential �ow, � = 0◦).

where

�i =
[
(�− 1)M 2

∞

(
H − 1

2
q2

)]1=(�−1)
(5)

P= Pie−�S=R; Pi =
��i
�M 2∞

(6)

H is the total enthalpy,

H =
�

�− 1
P
�
+
1
2
q2 =

�
�− 1

Pi
�i
+
1
2
q2 (7)
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Figure 16. Convergence history (M∞ = 0:1, Re = 500, � = 0◦).

Figure 17. Mach contours (M∞ = 0:1, potential �ow, � = 10◦).

The above formulation reduces to the standard potential equation for irrotational isentropic
�ows. The corrections due to entropy and vorticity are clearly represented by q∗ and e−�S=R,
respectively. The augmented potential equation is solved everywhere, while the corrections
are usually limited to small regions for most aerodynamic �ows.
The total enthalpy is assumed constant everywhere even in the viscous layer. This approx-

imation is acceptable for compressible �ows as discussed in Reference [5]. In general, the
energy equation can be solved to provide H .
In the viscous layer, the speed (the magnitude of the velocity) is calculated from the

tangential momentum equation, while the pressure (and hence the entropy) is calculated from
the normal momentum equation. On the other hand, for inviscid rotational �ows, the entropy
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Figure 18. Mach contours (M∞ = 0:1, Re = 500, � = 10◦).
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Figure 19. Convergence history (M∞ = 0:1, potential �ow, � = 10◦).

generated from curved shocks is obtained from the balance of the tangential momentum
and the rotational component of the velocity is calculated from Crocco’s relation which is
equivalent to the normal momentum equation. For more details, see Reference [5].

3. NUMERICAL METHODS

In this section, the grid, the scheme and the solver are brie�y outlined. To discretize the
domain, an algebraic grid generation is adopted. A C-grid is used as in Reference [5]. Finite
volumes are chosen to discretize the equations, however, �nite elements can be used as well.
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Figure 20. Convergence history (M∞ = 0:1, Re = 500, � = 10◦).

Figure 21. Mach contours (M∞ = 0:8, potential �ow, � = 0◦).

Arti�cial time-dependent terms are added to the momentum equations to help the overall
convergence. Arti�cial viscosity is needed for numerical stability for the potential equation
in the supersonic region and for the convection terms in the momentum equations. Deferred
correction approach is implemented where the original equations are written in conservation
forms.
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Figure 22. Mach contours (M∞ = 0:8, Re = 500, � = 0◦).
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Figure 23. Convergence history (M∞ = 0:8, potential �ow, � = 0◦).

The multigrid acceleration techniques are used only for the augmented potential equation.
The momentum equations are solved only on the �ne mesh. This simple strategy is a very
convenient way to avoid many problems associated with high speed �ows. The restriction
of multigrid application to the potential equation may not, however, provide the optimal
convergence rate and other strategies dealing with the convection=di�usion equations will be
studied elsewhere.
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Figure 24. Convergence history (M∞ = 0:8, Re = 500, � = 0◦).

Figure 25. Mach contours (M∞ = 0:8, potential �ow, � = 10◦).

The present formulation allows easily the identi�cation of the acoustic mode represented
by the potential equation, while the entropy and vorticity modes are governed by scalar
convection=di�usion equations. For many transonic aerodynamic problems, most of the near
and far �ow �elds are subsonic, hence an e�ective treatment of the elliptic potential equation
is very attractive. On the other hand, for standard Euler and Navier–Stokes equations, the
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Figure 26. Mach contours (M∞ = 0:8, Re = 500, � = 10◦).
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Figure 27. Convergence history (M∞ = 0:8, potential �ow, � = 10◦).

identi�cation of the modes are not obvious nor simple in general. Many attempts to exploit
the structure of certain schemes to achieve splitting of the modes on the discrete level are
encouraging but usually there are restrictions on the grid and calculations are more compli-
cated.
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Figure 28. Convergence history (M∞ = 0:8, Re = 500, � = 10◦).

Figure 29. Mach contours (M∞ = 0:9, potential �ow, � = 0◦).

A type dependent line relaxation procedure with optimal parameters is used for single grid
calculations for comparison. An order of magnitude reduction in work units is possible with
the present multigrid acceleration. Full weighting for restriction and bilinear interpolation for
prolongation are implemented in a straightforward manner.
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Figure 30. Mach contours (M∞ = 0:9, Re = 500, � = 0◦).
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Figure 31. Convergence history (M∞ = 0:9, potential �ow, � = 0◦).

To discuss the process, consider only two grids, coarse and �ne. If the residual on the
�ne mesh is Rf (�f ), the restriction on the coarse mesh is denoted by CRf (�f ). For linear
problems, Rf (�f ) = Af�f − bf , one can obtain the correction on the coarse mesh from

Ac(��c) = −CRf (�f ) (8)
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Figure 32. Convergence history (M∞ = 0:9, Re = 500, � = 0◦).

Figure 33. Mach contours (M∞ = 0:9, potential �ow, � = 10◦).

The correction on the �ne mesh is calculated from

��f = P��c (9)
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Figure 34. Mach contours (M∞ = 0:9, Re = 500, � = 10◦).

where P stands for the prolongation operator (in principle; PC = CP = I). Following Brandt
and Jameson, for non-linear problems, a full approximation scheme (FAS) is applied where
Equation (8) is modi�ed to read

Rc(�c) = Rc(C�f )− CRf (�f ) (10)

The right-hand side of Equation (10) is the di�erence between the residual on the coarse
mesh, evaluated based on the restriction of the �ne mesh values �f , and the restriction of
the �ne mesh residual to the coarse mesh. In solving Equation (10) on the coarse mesh,
the right-hand side should be frozen. A correction on the coarse mesh from the solution of
Equation (10) can be calculated from

(��c) = �c − C�f (11)

The correction on the �ne mesh is obtained by prolongation, hence the �ne mesh solution
is

(�f )new = (�f )old + P(��c) (12)

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:517–541
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Figure 35. Convergence history (M∞ = 0:9, potential �ow, � = 10◦).
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Figure 36. Convergence history (M∞ = 0:9, Re = 500, � = 10◦).

Few iterations on the �ne mesh are needed to smooth high-frequency errors resulting from
interpolation. The above process can be extended to more than two grids by induction. In
the present calculations, only three grids are used and the solution is fully converged on the
coarsest mesh. Programming multigrid, in general, is not simple, and there are many available
references full of details.
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Figure 37. Mach contours (M∞ = 0:85, potential �ow, � = 0◦).

Figure 38. Mach contours (M∞ = 0:85, Re = 2000, � = 0◦).

4. NUMERICAL RESULTS

Several cases are calculated for transonic �ows over NACA0012 airfoil at di�erent angles of
attack, Mach and Reynolds numbers. These cases include: potential �ows, inviscid rotational
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Figure 39. Convergence history (M∞ = 0:85, potential �ow, � = 0◦).
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Figure 40. Convergence history (M∞ = 0:85, Re = 2000, � = 0◦).

�ows and viscous �ows. The residual histories for single and multiple grids are compared for
each case.

4.1. Inviscid rotational �ows

Figures 1 and 2 show the Mach contours for potential and inviscid rotational �ows at
M∞ = 0:86 and � = 0◦. The corresponding convergence histories are plotted in Figures 3
and 4. Notice that the convergence rates of the potential and rotational �ows are very similar
for single and multiple grids.
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Figure 41. Mach contours (M∞ = 0:5, potential �ow, � = 0◦).

Figure 42. Mach contours (M∞ = 0:5, Re = 10 000, � = 0◦).

Similar results for M∞ = 1:5 and � = 0◦ are plotted in Figures 5–8. The corresponding
results for viscous supersonic �ow calculations (Re = 10000), with and without including the
entropy and the vorticity generated by curved shocks, are shown in Figures 9–12.

4.2. Viscous �ows

In Figures 13 and 14, the Mach contours are plotted for potential and viscous �ows (Re = 500)
at M∞ = 0:1 and � = 0◦. The corresponding residual histories are plotted in Figures 15 and
16. Similar results for the case of � = 10◦ are shown in Figures 17–20. In these calculations,
the compressibility e�ects are minimal. The present formulation includes the incompressible
�ow limit as discussed in Reference [5].
The results for M∞ = 0:8 and M∞ = 0:9 at � = 0 and 10◦ for potential and viscous

�ows (Re = 500) are plotted in Figures 21–36. The results for M∞ = 0:85 at � = 0◦ for
potential and viscous �ows (Re = 2000) are plotted in Figures 37–40. The work unit for
viscous �ow simulations includes the residual evaluations of the augmented potential equation

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:517–541
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Figure 43. Convergence history (M∞ = 0:5, potential �ow, � = 0◦).
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Figure 44. Convergence history (M∞ = 0:5, Re = 10 000, � = 0◦).

and the momentum equations on the �ne mesh. The latter are updated only in the viscous
layer.
Higher Reynolds number �ows (Re = 10000) are calculated for M∞ = 0:5 at � = 0◦, see

Figures 41–44. For these cases, a highly stretched grid is used without noticeable degeneration
of multigrid performance. The above numerical results are in good agreement with those
available in the literature for the same test cases, see References [8, 9].
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5. CONCLUDING REMARKS

Multigrid techniques are applied to accelerate the convergence of transonic aerodynamic �ow
simulations based on a hierarchical formulation for both inviscid and viscous �ows. For both
cases, the augmented potential equation is solved using iterative methods and the gain of
multigrid acceleration is substantial. An order of magnitude reduction in the work unit is
achieved for some of the test cases. For supersonic free streams, the present application of
multigrid is not as impressive. More sophisticated strategies should achieve further savings.
Extensions to three dimensional �ows are feasible.

REFERENCES

1. Brandt A. Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, GMD-Studie, vol. 85. GMD-
FIT, 1985.

2. Thomas JL, Diskin B, Brandt A. Textbook multigrid e�ciency for �uid simulations. Annual Review of Fluid
Mechanics 2003; 35:317–340.

3. Caughey DA, Jameson A. Fast preconditioned multigrid solution of the Euler and Navier–Stokes equations for
steady compressible �ows. International Journal for Numerical Methods in Fluids 2003; 43:537–553.

4. Jameson A. Solution of the Euler equations for two-dimensional, transonic �ow by a multigrid method. Applied
Mathematics and Computation 1983; 13:327–356.

5. Hafez M, Wahba E. Numerical simulations of transonic aerodynamic �ows based on a hierarchical formulation.
International Journal for Numerical Methods in Fluids, this issue.

6. Jameson A. Accelerations of transonic potential �ow calculations on arbitrary meshes by the multiple grid method.
AIAA Paper 79-1458, 1979.

7. Drikakis D, Iliev O, Vassileva D. On multigrid methods for the compressible Navier–Stokes equations. ICLSSC
2001. Springer: Berlin, 2001; 344–352.

8. Hollanders H, Lerat A, Peyert R. 3-D calculations of transonic viscous �ows by an implicit method. AIAA Paper
83-1953, 1983.

9. Hafez MM, Guo WH. Simulation of steady compressible �ows based on Cauchy=Riemann equations and Crocco’s
relation, Part II: viscous �ows. International Journal for Numerical Methods in Fluids 1999; 31:325–343.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:517–541


